Activation of cerebellar climbing fibers increases cerebellar blood flow: role of glutamate receptors, nitric oxide, and cGMP.

نویسندگان

  • G Yang
  • C Iadecola
چکیده

BACKGROUND The mechanisms regulating the cerebellar microcirculation during neural activity are poorly understood. One of the major neural inputs to the cerebellar cortex is the climbing fiber (CF), a pathway that uses excitatory amino acids, including glutamate, as a transmitter. We studied whether CF activation increases cerebellar blood flow (BFcrb) and, if so, we investigated the role of glutamate receptors, nitric oxide (NO) and cGMP, in the response. METHODS The CF were activated by harmaline administration (40 mg/kg, i.p.) in halothane-anesthetized rats with a cranial window placed over the cerebellar vermis. BFcrb was monitored by a laser-Doppler probe, and arterial pressure and blood gases were controlled. RESULTS With Ringer superfusion, harmaline produced sustained increases in BFcrb that peaked 20 minutes after administration (+115 +/- 13%; n=6; P<.05). The increases in BFcrb were substantially reduced by superfusion with tetrodotoxin (10 micromol/L; -91 +/- 5%; n=5; P<.05 from Ringer). The response was also attenuated by the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo-(F)-quinoxaline (100 micromol/L; -70 +/- 6%; P<.05; n=5), but not by the N-methyl-D-aspartate receptor blocker 2-amino-5-phosphonopentanoic acid (500 micromol/L; P>.05; n=5). The response was attenuated by the nonselective NO synthase (NOS) inhibitor nitro-L-arginine (1 mmol/L; -73 +/- 5%; n=6) or by 7-NI (50 mg, i.p.; -71 +/- 5%; n=5), a relatively selective neuronal NOS inhibitor. The soluble guanylyl cyclase inhibitor 1H-1,2,4oxadiazolo[4,3-a]quinoxalin-1-one (100 micromol/L) attenuated the response to harmaline (-73 +/- 5; P<.05; n=6) but not to superfusion with adenosine (P>.05; n=5) or 8-bromo-cGMP (P>.05; n=5). CONCLUSIONS Activation of the CF system increases BFcrb. The response depends on activation of glutamate receptors and is in large part mediated by NO via stimulation of soluble guanylyl cyclase. Glutamate receptors NO and cGMP are important factors in the mechanisms of functional hyperemia in cerebellar cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide-dependent efflux of cGMP in rat cerebellar cortex: an in vivo microdialysis study.

The stimulation of excitatory amino acid receptors in the cerebellar cortex results in the Ca2+/calmodulin-dependent activation of nitric oxide synthase. This leads to an increase in tissue levels of cGMP following the interaction of nitric oxide with soluble guanylyl cyclase. The cerebellar cortex has the highest levels of nitric oxide synthase and cGMP in the brain; however, the levels of gua...

متن کامل

AREGU December 46/6

Yang, Guang, Gang Chen, Timothy J. Ebner, and Costantino Iadecola. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. Am. J. Physiol. 277 (Regulatory Integrative Comp. Physiol. 46): R1760–R1770, 1999.—Crus II is an area of the cerebellar cortex that receives trigeminal afferents from the perioral region. We investigated the mechanisms of fu...

متن کامل

An evaluation of the nitric oxide/cGMP/cGMP-dependent protein kinase cascade in the induction of cerebellar long-term depression in culture.

Cerebellar long-term depression (LTD) is a model system of information storage in which a persistent attenuation of the parallel fiber-Purkinje neuron (PN) synapse is induced by conjunctive stimulation of parallel fiber and climbing fiber inputs at low frequency. As some studies have suggested that release of the gaseous second messenger, nitric oxide (NO), in the molecular layer and the conseq...

متن کامل

Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation.

The endothelium-derived relaxing factor, probably nitric oxide (NO), is a potent vasodilator that regulates the vascular tone in several vascular beds, including the brain. We explored the possibility that NO might be of importance for the increase of cerebral blood flow (CBF) associated with activity of the well-defined neuronal circuits of the rat cerebellar cortex. Laser-Doppler flowmetry wa...

متن کامل

Inhibition of presynaptic release-facilitatory kainate autoreceptors by extracellular cyclic GMP.

We found that both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate autoreceptors were present on the glutamate-releasing terminals of cerebellar parallel/climbing fibers and that they functioned as facilitatory autoreceptors. Extracellular cGMP inhibited the neurotransmitter release evoked by presynaptic kainate receptor activation; the inhibitory effect of extracell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 29 2  شماره 

صفحات  -

تاریخ انتشار 1998